Новейшие решения
в генодиагностике

Полимеразная цепная реакция в реальном времени (Real-Time PCR)

Принципиальной особенностью полимеразной цепной реакции в реальном времени является возможность детекции накопления продуктов амплификации непосредственно во время проведения амплификации. Так как кинетика накопления ампликонов напрямую зависит от числа копий исследуемой матрицы, это позволяет проводить количественные измерения ДНК и РНК инфекционных агентов. Полученная информация может быть использована для проведения мониторинга эффективности проводимой терапии, оценки клинического прогноза. В отличие от других методов количественного определения ДНК матрицы в пробе, ПЦР в реальном времени не требует дополнительных манипуляций, связанных с раститровкой ДНК исследуемой пробы или полученных в ходе ПЦР ампликонов, которые усложняют постановку анализа и могут приводить к появлению ложноположительных результатов. Подобный подход позволяет отказаться от стадии электрофореза, что ведет к резкому уменьшению вероятности контаминации исследуемых проб продуктами амплификации, а также позволяет снизить требования, предъявляемые к ПЦР лаборатории.

Введение

Широкое внедрение в область практического здравоохранения полимеразной цепной реакции (ПЦР) обусловлено простотой ее выполнения, низкой себестоимостью и надежностью. Вместе с тем, сегодня уже очевидно, что дальнейшее развитие ПЦР получит в области количественного определения нуклеиновых кислот (ДНК и РНК) инфекционных агентов.

Количественное определение ДНК инфекционных агентов в ходе лечения позволяет получать информацию о правильности или безрезультатности проводимой терапии, помогает предсказывать периоды обострения заболевания и принимать адекватные меры для скорейшего излечения больного без нанесения ущерба для его здоровья, связанного с неэффективной терапией.

Существует большое количество способов получить данные о концентрации нуклеиновых кислот в пробе методом ПЦР, но все они требуют дополнительных трудоемких этапов работы, связанных с предварительной раститровкой выделенной из анализируемой пробы ДНК, или полученных в ходе ПЦР ампликонов, что приводит к увеличению времени, необходимого для постановки анализа и сложности интерпретации полученных результатов [2,5]. Также, наличие дополнительных этапов работы увеличивает вероятность ошибки и получения недостоверного результата.

ПЦР в реальном времени

На сегодня существует метод, лишенный вышеперечисленных недостатков - это метод ПЦР в реальном времени (Real-Time PCR) [4]. Сущность метода заключается в исследовании накопления продуктов амплификации с помощью специального прибора без последующего электрофореза. Так как кинетика накопления продуктов амплификации связана с исходным количеством матрицы, это дает возможность точно оценить её количество [3].

Отличительными чертами данного метода, в отличие от классической ПЦР, является возможность количественного определения ДНК/РНК инфекционных агентов в исследуемом материале, отсутствие стадии электрофореза, менее строгие требования к организации ПЦР-лаборатории и автоматическая регистрация и интерпретация полученных результатов.

Отсутствие стадии электрофореза позволяет минимизировать риск контаминации продуктами ПЦР и таким образом резко уменьшить число ложноположительных результатов. Поскольку регистрация результатов проводится непосредственно в процессе ПЦР, весь анализ можно проводить в одной-двух комнатах лаборатории и нет необходимости в отдельном помещении для детекции продуктов реакции.

Данная методика в течение последних пяти лет успешно применяется в крупнейших диагностических и научно-исследовательских центрах развитых стран мира и в ближайшее время станет так же широко распространена, как и ПЦР в ее сегодняшнем формате, благодаря экономии производственных площадей, уменьшению количества персонала и востребованности количественного определения ДНК/РНК.

Использование математических методов анализа позволяет проводить автоматическую интерпретацию полученных результатов и снимает проблему субъективной оценки электрофореграмм.

Читать далее

Наши
преимущества

Материальная база

Для постановки ПЦР в реальном времени необходим специальный амплификатор, отличительной особенностью которого является возможность возбуждать и детектировать флуоресценцию, отражающую накопление ампликонов, на каждом цикле амплификации. На сегодня существует немного моделей приборов для ПЦР в реальном времени: это "iQ iCycler" ("Bio-Rad"), несколько типов "ABI Prism" ("Applied Biosystems"), "LightCycler" ("Roche"), "SmartCycler" ("Cepheid"). Каждый из этих приборов обладает рядом достоинств и недостатков, описывать которые не входит в задачи данной статьи, однако мы считаем, что лучшим прибором по соотношению цена/качество является "iQ iCycler" фирмы "Bio-Rad".

Детекция продуктов амплификации.

Для выявления продуктов амплификации в режиме реального времени используют следующие наиболее распространенные подходы:

  • Выщепление 5' концевой метки (TaqMan Assay)

Данная методика основана на использовании 5'-экзонуклеазной активности полимеразы. В реакционную смесь добавляют ДНК-зонды, в состав которых входит флуоресцентная метка в 5'-положении и гаситель флуоресценции в 3'-положении, а также фосфатная группа в 3'-положении. Эти зонды имеют места посадки внутри амплифицируемой области. Гаситель поглощает испускаемое флуоресцентной меткой излучение, а фосфатная группа в 3'-положении блокирует полимеразу.

В ходе ПЦР во время стадии отжига праймеров происходит присоединение ДНК-зонда к комплементарной цепи ДНК, причем чем больше продуктов амплификации образуется в ходе ПЦР, тем больше молекул зондов свяжется с соответствующими ампликонами. Во время стадии элонгации полимераза синтезирует комплементарную цепь ДНК и при достижении зонда начинает его расщеплять благодаря наличию 5'-экзонуклеазной активности. Таким образом происходит разъединение флуоресцентной метки и гасителя, что приводит к увеличению детектируемого свечения [3]. Очевидно, что чем больше ампликонов было наработано в ходе ПЦР на данный момент времени, тем интенсивнее будет свечение.

  • Использование зондов с комплементарными концевыми последовательностями (molecular beacons)

Данная методика отличается от описанной выше тем, что концевые последовательности зонда представляют собой взаимно комплементарные области, поэтому при температуре отжига праймеров они схлопываются и образуют шпильки [6]. Внутренняя область зондов содержит нуклеотидную последовательность, комплементарную амплифицируемой области. При отжиге праймеров зонды, не присоединившиеся к ДНК матрице, остаются в "схлопнутом" состоянии, так что происходит тушение флуоресценции.

Те же зонды, которые отжигаются на матрицу, разворачиваются, и флуоресцентная метка и гаситель расходятся в разные стороны. Таким образом, увеличивается интенсивность свечения.

  • Применение 2-х зондов с резонансным переносом энергии (LightCycler assay)

Данный способ детекции накопления продуктов амплификации отличается повышенной специфичностью, так как увеличение флуоресценции происходит при комплементарном связывании с ампликонами сразу 2-х ДНК зондов [1]. Принцип метода заключается в переносе энергии от одного флуорофора, находящегося на 3` конце первого зонда, ко второму флуорофору, находящемуся на 5` конце второго зонда, причем расстояние между флуорофорами составляет 1-3 нуклеотида.

При одновременном связывании обоих зондов с ДНК матрицей испускаемое первым флуорофором излучение передается на второй флуорофор, а его излучение детектируется прибором. Таким образом, возрастает специфичность анализа.

  • Использование интеркалирующих агентов

Этот способ детекции основан на том факте, что флуоресценция бромистого этидия и SYBR Green I значительно возрастает при их внедрении в двухцепочечные молекулы ДНК [4]. Таким образом, можно наблюдать за накоплением продуктов амплификации.

Очень важно отметить то, что увеличение флуоресценции может быть связано как с накоплением специфического продукта, так и неспецифического (праймеры-димеры, шмер). Для получения корректных результатов необходимо дополнительное изучение полученных ампликонов с помощью построения так называемых "кривых плавления" (melting curves).

Кривые плавления

Для этого после окончания ПЦР реакционную смесь нагревают и непрерывно измеряют флуоресценцию. По достижении температуры плавления продукта амплификации флуоресценция резко снижается.

Каждое резкое уменьшение флуоресценции на графике соответствует числу полосок, получаемых на электрофорезе, то есть числу разных типов ампликонов. Для облегчения работы с полученной информацией проводят дифференциальный анализ кривой плавления. Такой способ визуализации полученных данных гораздо удобнее для понимания и анализа.

Применение кривых плавления не ограничивается только детекцией продуктов амплификации с помощью бромистого этидия и SYBR Green I. При использовании кривых плавления в системах с ДНК-зондами (Taq-man assay, beacons) возможно различать точечные мутации, расположенные внутри областей связывания ДНК-матрицы и зонда. Наличие таких мутаций способно привести к изменению температуры плавления зонда и к изменениям в графике кривой плавления [1]. Использование кривых плавления не требует от оператора амплификатора никаких дополнительных манипуляций с пробирками, а интерпретация полученных данных автоматизирована и формализована.

Подводя итоги стоит отметить следующее: использование ДНК-зондов в том или ином варианте является наиболее предпочтительным в свете повышения специфичности анализа. Однако к недостаткам зондов относится высокая стоимость, что делает работу по подбору зондов, праймеров и условий амплификации дорогостоящей. Вместе с тем, использование интеркалирующих агентов является очень простым и дешевым. Отпадает необходимость подбора специальных праймеров, зондов, так как можно пользоваться уже используемыми праймерами, эффективность работы которых уже проверена. Эти обстоятельства делают применение интеркалирующих агентов весьма привлекательным.

Заключение

В настоящее время создана научная и материально-техническая база для широкого внедрения в клиническую лабораторную диагностику новой генодиагностической технологии - количественного определения ДНК/РНК инфекционных агентов - ПЦР в реальном времени (Real-Time PCR). В ближайшие годы данная технология будет применяться в гепатологии (вирусные гепатиты В и С), в клинике ВИЧ и ВИЧ-ассоциированных инфекций (в первую очередь герпетическая и цитомегаловирусная инфекции), в дерматовенерологии, фтизиатрии, гастроэнтерологии, пульмонологии. С помощью ПЦР в реальном времени будет оцениваться эффективность проводимой терапии и клинический прогноз заболевания.

наши
врачи

Соломенный Руслан Иванович

Врач уролог, специалист УЗИ

Опыт врачебной практики с 2011 года.

Заседа Юрий Игоревич

Андролог, сексолог, уролог, репродуктолог, психотерапевт.

Опыт врачебной практики более 31 года.

Врач высшей категории. Доктор медицинских наук. Основатель и главный врач клиники.

САМОЛЕЧЕНИЕ ВРЕДИТ ВАШЕМУ ЗДОРОВЬЮ

Киев | ул. Василия Тютюнника, 5-В
пн-cб с 8.00 до 18.00

Львов | ул. Костя Левицкого, 97
пн-пт с 9.00 до 17.00